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AN EQUIVALENCE BETWEEN TWO ALGORITHMS
FOR QUADRATIC PROGRAMMING

Jong-Shi Pang

ABSTRACT: In this paper, we demonstrate that the Van de Panne-Whinston
symmetric simplex method when applied to a certain implicit formulation
of a quadratic program generates the same sequence of primal feasible
vectors as does the Von Hohenbalken simplicial decomposition algorithm
specialized to the same program. Such an equivalence of the two
algorithms extends earlier results for a least-distance program due to

Cottle-Djang.
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1. INTRODUCTION. There has been an excessive number of algorithms
for solving a convex quadratic program which are based on the Kuhn-Tucker
optimality formulation of the program and employ simplex pivots. An
undesirable feature of such a pivoting algorithm is that typically, the
Kuhn-Tucker formulation contains more variables (multipliers of the
constraints) than the program itself.

In two recent papers (Refs. 1 and 2), Von Hohenbalken has described
a simplicial decomposition algorithm for solving a nonlinear minimization
program with a pseudoconvex objective function and with a convex compact
feasible set. The algorithm requires no dual variables and therefore
eliminates the undesirable feature of having to operate on a formulation
with extra variables. Another advantage of the algorithm when applied to
linearly constrainted problems (such as quadratic programs) is that the
powerful simplex method of linear programming can be employed to solve the
subprograms.

This paper is concerned with the study of two algorithms for convex
quadratic programming. One is the Von Hohenbalken algorithm and the other
is the symmetric simplex method due to Van de Panne-Whinston (Ref. 3). It
is shown that the former algorithm specialized to a convex quadratic program
with bounded feasible set generates the same sequence of primal feasible
vectors as does the latter applied to a certain implicit formulation of the
given program. This result has two implications. First, the specialized
Von Hohenbalken algorithm can thus be viewed as a pivoting algorithm. Second,
the Van de Panne-Whins:on algorithm may be implemented as a decomposition

algorithm requiring no extra variables (the multipliers). As a remark,
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2
we mention that Von Hohenbalken's algorithm has been applied quite
successfully for solving some fairly large quadratic programs arising
from portfolio selection (Ref. 4).
It is important to point out that Van de Panne-Whinston algorithm

when applied to the standard formulation of a quadratic program

T
minimize ¢ x +§xTCx subject to x€X = {x €R" : x >0, Ax = b, Dx < d}

may not produce the same sequence of primal feasible vectors as does
Von Hohenbalken algorithm. An example (due to A. Djang) given in the
Appendix will illustrate this fact.

Obviously, by using the representation of the feasible set X in
terms of its extreme points and rays, the quadratic program (1) is

equivalent to the one below
minimize (PN + QE)Tc + 3(PN + Q&) C (PN + QF)
subject to eTn = 1 ; § and N30,

Here P and Q are the matrices of extreme points and rays of the set X
respectively; and e is the vector of ones. Due to the fact that P and Q

are known only implicitly, we shall call (2) the implicit formulation

of the quadratic program (1). It is our contention that when Van de Panne-

Whinston algorithm is applied to (2) with a vacuous Q, (i.e., with the

feasible set of the original program (1) being bounded) it produces exactly

the same sequence of primal feasible vectors as Von Hohenbalken algorithm
is applied to (1). A noteworthy point here is that in order for the

former algorithm to be applicable to (2), it is necessary to be able to

M
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3
implement the algorithm without the full knowledge of the matrices of

generators. The tool employed to achieve this is the column generation

technique described in (Ref. 5). Incidentally the algorithm described
in the reference provides an alternmative method for solving the quadratic
program (1) without the use of multipliers. In the case where the
matrix P is explicitly given, the matrix Q is vacuous, the matrix C is
an identity and the vector c is zero, the quadratic program (2) reduces

to the least-distance program studied in (Ref. 6) where the equivalence of

the Van de Pamne-Whinston and Von Hohenbalken algorithms has been
established.

The idea of using the implicit formulation (2) to solve the
quadratic program (1) has previously appeared in an unpublished paper
by Sacher (Ref. 7) who proposed a decomposition algorithm that involves
solving quadratic subprograms by Lemke's method. As we shall see both
Van de Panne-Whinston and Von Hohenbalken algorithms require solving
systems of linear equations and linear subprograms only.

The rest of the paper is organized as follows. In the next section,
we describe a revised version of the Van de Panne-Whinston algorithm

applied to solve a quadratic program of the form

minimize qTx + ixmbx subject to x>0 andAx=b . 3)

This version operates directly on the equality constraints without
converting them into inequalities, In Section 3, we apply this revised
algorithm to (2) and describe the column generation technique to show how
the algorithm can actually be implemented without the explicit knowledge

of the matrices P and Q. In Section 4, we establish a necessary and




sufficient condition for an exchange pivot to occur in the application
of the revised Van de Panne-Whinston algorithm to solve the implicit
formulation (2) of the quadratic program. A consequence of this result
is that the finite termination of the algorithm can be established
without the assumption of nondegemeracy. Such conclusions extend those
established by Cottle and Djang (Ref. 6) for the least-distance program.
Finally, in the fifth and last section, we establish the above-mentioned

equivalence between Van de Panne-Whinston and Von Hohenbalken algorithms.

2. THE SYMMETRIC SIMPLEX METHOD OF VAN DE PANNE - WHINSTON . We first
summarize the operations of the Van de Panne-Whinston symmetric simplex
method for solving a general convex quadratic program (Ref. 3). To start,
obtain a primal feasible vector by means of a Phase I simplex method. With
this vector, set up the initial standard tableau of the Kuhn-Tucker
conditions so that no pair of corresponding primal and dual variables is
simultaneously basic. Choose as a driving variable the primal nonbasic
variable whose corresponding dual complement is most negative. If no

such variable can be identified, stop; the current primal feasible vector
is optimal. Otherwise, increase the driving variable until it is blocked
by either its dual complement becoming nonnegative or by some other basic
primal variable becoming nonpositive. If there is no blocking variable,
stop; the given program has an unbounded objective value. If the blocking
variable i{s the dual complement, perform a principal pivot making the
driving primal variable basic and the corresponding blocking dual
complement nonbasic (IN-PIVOT). This completes a major cycle and the

algorithm attempts to find a new driving variable. If the blocking
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variable is some other basic primal variable, then either a simple
principal pivot or a double pivot is performed, depending on whether
the former is possible, If the principal pivot is in fact possible,
then a minor cycle is entered with the current driving variable unchanged
(OUT-PIVOT). Such a minor cycle must terminate in a finite number of
iterations with the driving variable becoming basic and its dual complement
nonbasic. At that point, a new major cycle starts. Finally, if a double
pivot is performed, then the curremt major cycle is completed and a new one
begins (EXCHANGE-PIVOT).

Referring to the quadratic program (3), we say that an index set «

is basic feasible if (i) the associated basis matrix

T
B(a) = Gau (A.)
-A.a 0

where Gau is the principal submatrix of G indexed by a and A., consists

of the columns of A indexed by «, is nonsingular; and (ii) the vector

%
satisfies xq P 0.

*
If o is a basic feasible index set, the vectors x =

x*
* ) and A*
0

satisfy the Kuhn-Tucker conditions of the program (3)

RN - [ S S




u=q+Gx+AN >0 Ot S e

0 =b - Ax 2 urx =0

* *
except possibly for the nomnegativity of the vector u = q + Gx + ATX* s
*
Note that B, 0. The standard system corresponding to the (basic feasible)
index set a is
X \= - B(c:r).1 q + G Xog = [ u %)
o o af B a

A b -A.S 0

1

T -1 T =
uB = qs = (GBG(A'B) )B(ar) 4, +(G9a (A’B) )B(a) u

b 0

1

T =
+ GBB- (GBG(A'S) ) B(a) G x

af \|'B

-A.

where B is the complement of gq.

In what follows, we state a revised version of Van de Panne-Whinston
algorithm applied to the quadratic program (3). This version operates with
basic feasible index sets and keeps track of the useful ingredients only.
In particular, it does not require the full knowledge of the system (4) and
can thus be considered as an analog of the revised simplex method of linear
programming.

Let o be a given basic feasible index set. Solve the system of linear




s
3
:

W T .

* *
equations for xa and )\

B(a) x: - - q: (5)
*
A b
and compute
ia =g+ c“x: + (A.B)T L (6)

The vector iﬁ gives the values of the currently basic dual variables.
Determine an index t €f so that
q, = min (q,) . )
i€p

If c'lt 2 0, stop; the program (3) is solved. Otherwise, solve the system

of linear equations for fa and h

B@) [£,\ = Gy ®)

h <A,
and compute

Gep =Gy + G £, + (A 0Th

Note that &tt gives the diagonal entry corresponding to the pair of driving

variable X, and its complement u, . 1f étt = 0 and fa 2> 0, stop; the

program (3) is unbounded below. Otherwise, determine




61 = min { - x* i

$ £. <0, J€ 9
o2 = (-3 /G £ 6. >0
qt tt tt
® if Gtt =0
1f 92 < 9‘, add the index t to the set o and return to solve a new system

of linear equations (5). This corresponds to an IN-PIVOT. If 92 2 9‘,

let s be a minimizing index in (9). Solve the system of linear equations

for £ and h
&
B(a) [ E = = (10)
o o ed
h 0

where e: is a unit vector with a one in component s. If Es > 0, drop the
index s from the set a and return to solve a new system (5). Skip the
comparison (7) and proceed directly to (8) after the solution of (5) with
the same index t. This corresponds to an OUT-PIVOT. Finally, if Es= 0,
replace a by o \ {s} U ft] and return to (5). This corresponds to an
EXCHANGE-PIVOT, Note that Es is the diagonal entry corresponding to the
pair of blocking variable Xg and its complement ug

In practice, the system of linear equations (5, 8, 10) should best be
solved adaptively by a factorization scheme which takes advantage of the
change of the basis matrix B(a) (such as those described in (Ref. 8)).

We close this section by repeating an important fact. Namely,

throughout the algorithm, each index set o is basic feasible.
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3. THE TMPLICIT FORMULATION AND THE COLUMN GENERATION TECHNIQUE. In this

k section, we specialize the revised Van de Panne-Whinston algorithm to the
implicit formulation (2) of the quadratic program (1). In this specialization,
: each basic feasible index set a is the disjoint union of two index sets
3
a, and a, consisting of the indices of the basic M- and E-variables
‘ respectively. The associated basis matrix is then
it T
By , @)) = /(P _) CP p_J) ¢€Q e
1 2 @ @ o @, o,
T T
@Q ) cp Q. )" cQ 0
% > 2 e
- eT 0 0
=

Throughout the algorithm, o, is always nonempty whereas «, may be empty.

1 2
Initially, @, is a singleton and @, empty. Each index in aI(az) corresponds

to an extreme point (ray) of the feasible set X. The corresponding

where Pa (Qa ) consists of

feasible vector is given by x = P_ 1
S 2 e

1 + Qa2§a

the columns of the matrix P(Q) indexed by « (a2 respectively). These

1

columns Pa and Qa are to be stored after they are generated. As pointed
1 2
out in (Ref. 5), there is a reasonable limit on the number of such columns |

required in each iteration of the algorithm.

With the index sets «a, and «, and columns Pa and Qa given, the

system (5) may be written as

S S ———
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* T
g @, )¢
a, a,
*
P 1

%*
The scalar p 1is the multiplier of the convexity comstraint in (2). After
the solution of the system of linear equations (11), one needs to determine

the index t. From (6), we have

Gy = (Pa‘)T c + (Pa')T o, %) n; +p" ep1\\
<Qﬁ2)T (Qaz)T §:2 0
" (231)"' (c +cx) +p* ,
(Qaz)T g o)

and o, respectively and

where 51 and BZ are the complements of @, >

%* * *

(12)

By (11), it follows that

@ )T

%* *
(c+Cx ) +p |e =0
°’1
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1

Therefore EB > 0 if and only if

T * *
x'(c+Cx)+p 20 for all x €X .

Hence to determine the desired index t, one may solve the linear program
* T *
minimize L(x ) = x (¢ + Cx ) subject to x€X . 13)

Either this program has a finite optimum f.(x*) or it is unbounded below.
In the second case, an extreme ray Qt with t §a2 is obtained. In the
first case, if ﬁ(x*) + p* > 0, then the program (2) (and thus (1)) is
solved. Otherwise an extreme vector Pt: with t Fa1 is obtained. 1In
either case, if the program (2) is not solved yet, an index t and a

corresponding vector Pc or Qt are obtained such that &t = min (ii) is
1€8 3

negative. Note that it = f.(x*) + p* where f.(x*) denotes the final
objective value of the linear program (13). With the index t determined,
the rest of the major cycle can be completed without difficulty.

To summarize, we present below a detailed description of the revised e
Van de Panne-Whinston algorithm specialized to the implicit formulation

(2) of the quadratic program (1).

Step 0 (Initialization) Solve the linear program
minimize clx subject to x€X .

If this program is infeasible, stop; so is the quadratic program (1).

Otherwise let P, be an extreme point feasible vector. Set a1 =013}

1
and @, = ® . (See Remark 1.)




12

Step 1 (Major Cycle) Solve the system of linear equations (11) for

* %*
e
1 2

program (13). (See Remark 2.)

Step 2 (Termination Test) Does the final objective value ﬂ(x*) of the
= *
linear program (13) satisfy L(x ) + p 2 0? 1If yes, stop; the current

*
x 1is a desired optimum solution to the quadratic program (1). Otherwise,

continue.

Step 3 (Minor Cycle) Let Pt (or Qt) be the extreme point (ray) solution

obtained at the termination of the linear program (13).

linear equaticns for £ , g and h:
8. 8

T
B(a1, az) fa, - (Pa’) CPt or -
T
3 (Q, ) cp
@, a, t
h -1

and compute the diagonal entry

= T T
Gtt = (Pt) CPt o (Pt) C(Pa £ +Q 8y ) +h

or

= T T
Gpe = (@) € + Q)" OB, £, +Q, 8, ) +h

* +*
and p . Define the vector x by (12) and solve the linear

T
@, )" cq,

T
Q)" o0

Solve the system of

(14)

(15a)

(15b)

P—




13 |
: £ 1
Step 4 (Test for Unboundedness) If Gtt = 0 and 1 2 0 , stop; the ]
g & |
%

quadratic program (1) is unbounded below. Otherwise continue,

Step 5 (Ratio Test) Determine the minimum ratios

B £ 4
oy =min [ -1 /£ : £ <0, 1i€q)

1 *
ez-min{-gi/gi : gi<0,i€a2]
and let |

1 1 1
9 -mm{e,,ez},

- % %* - -
g° - - @aH + oM /&, 1£& >0

® otherwise .

Step 6 (In-Pivot) 1If 0 < » Teplace @, (or a,) by a, U {e]} (a, U {t]
depending on whether Pt or Qt: is obtained at Step 3. Go to Step 1. If

32 2 e', continue.

Step 7 (Check Pivot) Let s be a minimizing index in 91. Solve the system of

linear equations for Ea g Eq and h:

1 2
: B(a1 s az) fa1 = e1 or 0
i - s
4 g 0 e i
Uz 02 ';
h 0 0




| ,4

depending on whether s ch1 or s €a2. Here e: and e: are unit vectors
1 2 t

with a one in component s.

‘:A Step 8 (Exchange Pivor) If s €a,(a,) and fs(és) = 0, replace a,(a,)

by a,(@,) \ s} U {t] and go to Step 1. Otherwise continue.

Step 9 (Out-Pivot) Replace a,(or a,) by a, (a,) \ {s]. Solve the system

} of linear equations (11). Retain the same vector Pt or Qt and go to Step 3. | 4

Remarks 1. This is just one way of getting an initial extreme point

feasible vector.

VR T L PR T o

Z. If @, is a singleton and a, is empty (as in the initialization

step), then the unique solution to the system (11) is trivial to obtain. . 1

S RRERI— -

% *
In particular, na must be equal to 1 and thus x = Pa . A similar
1 1

remark holds for the systems in Steps 3 and 7.

¥

By using (14), it is easy to see that the expressions (15a) and

(15b) can be simplified as:

G,=® +P f +Q g )C(_ +P_f +Q g ) (16a)
tt t Ga d1 dz 02 t G.' a' 02 dz

G“ = (Qt + Pafa, + Q“zg"‘z) (] (Qc + Pa.,fa1 + Q“zg"z) . (16b)

We close this section by pointing out two more remarks. First, if

the feasible set X is bounded, then Step &4 of the algorithm will never happen.
It can therefore be skipped. Second, if the program (1) is strictly convex or

equivalently, if the matrix C is positive definite, then by (16) and the




definition of the index t, it can be easily shown that the entry étc
is always positive. Two consequences of this result are: (i) again,
Step 4 will never happen; and (ii) the algorithm will always compute

an optimum solution of the program (1).

4, THE EXCHANGE PIVOTS. In (Ref. 6) it is shown that for the least-
distance program, the exchange pivot (Step 8) is never performed because
the pivot entry (Es) is always positive. A consequence of this result is
that the finite termination of the algorithm can be established without
the assumption of nondegeneracy, i.e., the assumption that the basic
primal variables are positive in each tableau. In this secéion, we extend

these results.

Theorem 3.1. Consider the application of the revised Van de Panne-
Whinston algorithm to the implicit formulation (2) of the convex quadratic
program (1) as discussed in Section 3. Then an exchange pivot is performed
if and only if an in-pivot is not performed and the current index set a,
is the singleton {s} .

To prove this lemma, we first establish
Lemma 3.2. Let C be symmetric positive semi-definite. 1If B(al, az) is
nonsingular, then so is each B(a’,, dz) for any a" Ca, , a’z < a,

and aq $o.

Proof. Suppose that for some such subsets aq and a& ¢ B(aq 2 a;) is
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singular. Then there exist £, » 8y and h such that *
1 2

’ /

g
s
h

It is easy to deduce that i

T
(64 £, +Q/,8/) C@®s £/, +Qr gs) =0,
o) "o} T e Baf Py By g Sy

By the given assumption on the matrix C, it follows that ‘

c, £, +Q, 8/,) =0,
o o “’2“2

1. et
’
= £ o B H
Thus h = 0. By defining vectors £ -( I) and g = 2 ] , 1t is
a o
1 0 2 0
easy to see that
B(c'1 $ az) f"1 \- 0
g
"2
0
Since fd and ga; cannot both be zero, we obtain a contradiction Q.E.D.
1 2

Proof of Theorem 3.1. It suffices to show that if an in-pivot is not

performed, then

TR L
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(i) s€a, implies Es >0 ; and

(ii) s €a‘ implies fs > 0 unless the current index set d‘ is the

singleton {s }.

In fact, both of these assertions follow easily from the previous
lemma. Q.E.D.
| Theorem 3.1 implies that it is not necessary to execute Step 7 in
the algorithm to determine if an exchange pivot is performed. In words
an exchange pivot corresponds to am exchange of the extreme point Ps
with another one Pt' The reason that such a pivot is never performed
in the least-distance program is due to the choice of the initial extreme
vector as one minimizing the given objective function. Such a choice is
clearly impossible in the present situation because one does not know £

all the extreme points in advance. An exchange pivot can thus be thought

.

of as a search for such an extreme point.

Corollary 3.3. No nondegeneracy assumption is needed for the finite

termination of the algorithm.

Proof. In fact, as pointed out in (Ref. 6), a degenerate (i.e., zero) basic

primal variable in any tableau may be dropped from the basis by an
out-pivot. So if a tableau contains such variables, after several such

out-pivots, either of two cases will arise: (i) the cardinality of

a, is 1, or (ii) the cardinality of @, is greater than 1 and the ratio
test (Step 5) indicates that an in-pivot should be performed. 1In case (i),
it is easy to see that n:‘ = | and the tableau is nondegenerate. In

case (ii), the tableau must be nondegenerate in order for the in-pivot

to happen. Q.E.D.
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5. THE EQUIVALENCE, As Von Hahenbalken algorithm applies only to
programs with compact feasible sets, we assume throughout the rest of
this paper, that the feasible set X of the program (1) is bounded. In

what follows, we restate the algorithm as described in (Ref. 1). Let

f(x) = ch + }xTCx denote the objective function, and grad demote the gradient.

Step 0 (Initializatiom) Solve the linear program
minimize xT grad £(0) subject to x €X .

If this program is infeasible, stop; so is the quadratic program (1).

Otherwise, let :?1 be an extreme point of X. For t = 0, set

t+1 A

x = x andBt“-{ﬁ‘}.

Step 1 (Major Cycle) Set x* = xtﬂ, Bt = Bt:'M and let St and Mt be the

simplex and the affine manifold generated by Bt. Use linear programming

to locate the extreme point ;Ek that solves
minimize xT grad f(xt) subject to x €X Qan

Step 2 (Termination Test ) 1Is (ﬁk - xt)T grad f(xt) equal to zero?
If yes, stop; the vector xt is an optimal solution to the quadratic
program (1). Otherwise augment the basis Bt by ﬁk to form the new

affine basis B = { 2! ,...,ik'1 ,ﬁk} 4

Step 3 (Minor Cycle) Attempt to find a minimizer of f on the manifold M
generated by B. If £ possesses a minimizer x on M, go to Step 6.

Otherwise, find its minimizer on M where M is the manifold through sk
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and parallel to M N Mt. The barycentric representation of x’ with

respect to the basis B is x' = Bw’ with w{t > 0 and at least one w;*k <D,

Go to Step 7.

Step 6 (In-Pivot) The barycentric representation of the minimizer x

+1 o= t+1

isi-Bl-vwitth>0. Ift-ri>0fora111,setxt =x, B =B

and go to Step 1. Otherwise continue.

Step 7. Intersect the line segment x'x’ or the segment x x with the
boundary of S, the simplex generated by B; the intersection point
t r

r
X = Bw will have wi k

> 0 for all i with w° > 0 and at least cne wa‘k = 0.
Let s be an index such that w: =0. Set B =B \{s ] and let s* be

the simplex generated by B.

Step 8 (Exchange-Pivot) If st is zero-dimensional, set x':"'1 = xt,

BM1 = Br and to to Step 1. Otherwise continue.

r r

Step 9 (Out-Pivot) Set xt = x », B=B , M= Mr, S = s* and go to

step 3.

Theorem 4.1. The Van de Panne-Whinston algorithm stated in Section 3
and Von Hohenbalken algorithm stated above generate the same sequence

of primal feasible vectors in the quadratic program (1).

Proof. To prove the theorem, we consider both algorithms entering a major
cycle. By induction on the number of major cycles, we may assume that the

affine basis Bt (in Von Hohenbalken algorithm) is the same as Pa (in
1

Van de Panne-Whinston algorithm). The vector xt is given by
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%* * *
xt = P na = x with x being the feasible vector corresponding to the

g

index set ay. Under this identification, it is immediately clear that

the linear program (17) is precisely the one (13). The termination test
(Step 2) in Von Hohenbalken algorithm is to check if the vector xt is an
optimal solution to the linear program (17). By using the equation (11)

3 _ v
to obtain the following explicit expression for p ]
* * *
oF == cHT (e +ex) 4
it is easy to see that the corresponding step in Van de Panne-Whinston
algorithm is doing precisely the same thing.
After Step 2, the two algorithms start to operate somewhat differently.

To establish the theorem, it suffices to show that at the completion of the

ma jor cycle, both algorithms generate the same affine basis and feasible

vector. To achieve this, we use the next two lemmas.

i Lemma 4.2. Suppose that both algorithms enter the minor cycle with the
same basis and extreme point from Step 2. Then an in-pivot occurs in one
algorithm if and only if it occurs in the other. Moreover, the feasible

vectors obtained after such a pivot step are the same.

Proof. Let B = B* U {il‘} be the affine basis in Von Hohenbalken algorithm

with B® = Pa being the corresponding basis in Van de Panne-Whinston algorithm.
1

Notice that X ¥ = P,.
An in-pivot occurs in the former algorithm if and only if £ has a

minimizer x = Bw on the affine manifold M generated by B and w > 0.

This occurs if and only if the system
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T -
B ufey) ©* o yperauey * %G ugey =0

ik,

T
€y ufe) Yayufey ™!

has a solution (walu (e}’ 0) with walu [t} >0 . Since the matrix

T
B(a,) = (P ) CP e &
1 oy @ o E

*
- ¥ £
Yoy “al @ | e (18a)
) p* h
0 = L(x*) + p* + c';tt W, (18b) "
n* £
where ( al) and ( °’1) are given in (11) and (14) respectively and
p* h

Gtt in (16a). (Recall that the matrix Q is vacuous.) Observe that

the system (18) is precisely the relevant portion in the standard tableau
with respect to the basic index set @y (cf£. (4)). Since i(x*) + p*

is negative (the algorithm is not terminated yet) it is obvious that the
system (18) has a solution with walU (e} positive if and only if

02 < 91 in the ratio test (Step 5 of Van de Panne-Whinston algorithm) or

equivalently, an in-pivot occurs in the latter algorithm. Moreover, if
such a pivot is in fact performed, it follows that both algorithms

generate the same feasible vector given by PalU [t} "a]_U T3 where

wa Ut} is the unique (positive) solution to (18). This proves the lemma.
1
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Lemma 4.3. Suppose that the affine basis Br - Pa contains more than one
1
vector. Then the same conclusion in Lemma 4.2 holds for an out-pivot.

Proof. By Lemma 4.2 and the fact that an exchange-pivot (in both algorithms)
is performed if and only if an in-pivot is not performed and the current

affine basis Br (i.e., Pd ) is a singleton, it suffices to verify that
1
the feasible vectors obtained after an out-pivot is performed are the

same. To prove this, observe that if f does not have a minimizer x
on the manifold M generated by B = BrLJ{ik] , then Step 3 of the
Von Hohenbalken algorithm attempts to find a minimizer x° of f on the

manifold M°. It is easy to see that the vector x° so obtained is given

b ’ + 2 = ],
y Pal wal Pt where wal is the solution to (18a) with W, 1

Consequently, in either case, the vector x° obtained in Step 7 of

Von Hohenbalken algorithm is given by

x" = 8%  w_ + (1-8%) P
Q. (o

* 4+ B% <0x <1 .
oy o ﬂa e P, w, for some 0 <6*<1

) i |

The required 8* is chosen to be the largest value of 8 for which w; = o
1
6w + (1-6) M* >0 . It is obviously equal to

e*-min{-nt/(wi-‘ﬂt) :iEal.wi<'ﬂI} g’ i

From (18a) it follows that 6% W = 61 where 81 is the minimum ratio
obtained in the ratio test (Step 5) of Van de Panne-Whinston algorithm.

Thus, the vector x 1is equal to

r 1 1
x -?al[ng +fa 8" 1] +Pte

1 1

which is precisely the one generated by Van de Panne-Whinston algorithm.

This proves the lemma. Q.E.D.

T P ——
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Combining these two lemmas, we obtain the desired conclusion in
Theorem 4.1 readily. Finally, we point out that the two algorithms differ
only in the way each minor cycle is carried out. Basically, they are

the same algorithm.

6. APPENDIX. The example below (due to Professor A. Djang of the Univer-
sity of Kansas) shows that the Van de Panne-Whinston algorithm applied
to the standard formulation (1) of a quadratic program may not produce the

same sequence of primal feasible vectors as Von Hohenbalken algorithm.
Example. Consider the program
minimize 1/z(x2 + 2) - x. - 2x
el 1 2

subject to 2x1 + 3x2‘§ 6. ., + 4x2 S9Nl X

& i g 2
Starting at the origin, the Van de Panne-Whinston algorithm generates
the sequence: (0,0), (0,%) and (I%GS 5 1@65 ). Starting at the same

point the Von Hohenbalken algorithm generates the sequence: (0,0),

153. 68 19 14
) 99 and ( /15 , "*/15) .
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